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Abstract  

In this work, we use a simple deep learning model to
classify a set  of  emissivity  spectrum from samples
into six different classes. We test the network for only
one  hidden  layer,  changing  the  hidden  units.  The
results showed an accuracy of 1.0 after 200 iteration
steps (epochs) for 100 hidden units. The novelty of
the work resides in the fact that there is no precedent
for it to be applied for the classification of emissivity
values  in  the  range  of  thermal  infrared,  being  this
range of the electromagnetic spectrum, so important
for geological mapping and mineral exploration. 

Introduction

Vibrational  spectroscopy provides a means for studying
geologic materials both in the laboratory and in remote
sensing  applications  (Ruff  et  al.  1997).  The  study  of
minerals and rocks using this technique is based on the
principle  that  molecules  vibrate  as  they  interact  with
propagating  electromagnetic  (EM)  energy  (Lane  and
Christiansen  1998).  The  fundamental  frequencies  of
internal  molecular  vibration  for  most  geologic  materials
occur in the  mid-infrared range of the EM spectrum, and
for this reason it is a very useful, non-invasive technique
for characterization of materials for planetary exploration.
In  despite  of  this,  it  is  not  easy for  the human eye  to
identify a material  from its emissivity spectrum. 

In this sense, machine-learning techniques are becoming
increasingly  important.  In  particular,  deep  learning  has
proven to be both a major breakthrough and an extremely
powerful tool in many fields(Zhu et al. 2017)

Remote-sensing  scientists  have  exploited  the  power  of
deep learning to tackle different challenges and instigated
a  new  wave  of  promising  research.   Deep  learning
involves a class of models which try to hierarchically learn
deep features of input data. The network is first layer-wise
initialized via unsupervised training and then tuned in a
supervised  manner.  In  this  scheme,  high-level  features
can be learned from low-level ones, whereas the proper
features can be formulated for pattern classification in the
end  (CHEN  et  al.,2014).   The  most  commonly-used
neural network model for classification in remote sensing
is  the  multi-layer  perceptron  trained  by  the  back-
propagation algorithm (Rumelhart et al. 1986) . 

Given a dataset of shape (n,m), where n is the number of
data samples and m is the length of each data sample.
The basic goal of a neural network is to learn a function

from a set of fixed-size inputs  X = {x1,x2,…,xi,…,xn}, xi є
Rm, to a fixed-size output  y = {y1,y2,…,ym}, yi є Rm .The
network consists of the input layer (Figure 1), one or more
intermediate or hidden layers consisting of a set of units
or nodes, and an output layer. 

In a feed-forward neural network, the layers are ordered
and each unit of a layer connects to some subset of the
units of  previous layers.  A layer is dense if  each of  its
units connects to all of the units in the previous layer. A
network is deep if there are several hidden layers. Each
connection between units in adjacent layers has a weight
and each unit has a bias. 

Method

During the training, after computing the weighted sum of
the inputs, an activation function is calculated. These two
steps can be formulated as 

 a
l
=f (wlal−1+b l)                       (1)

where the wl is the weight matrix for each layer, initialized
with random values, and  bl   is  the bias vector for each
layer,  initialized with zeros.  The  activation function of  a
node defines the output of that node, This output is then
used as input for the next node and so on.

Figure 1.  Diagram of the proposed neural network for the
spectrum recognition (The hidden layer units are reduced
for simplicity)

The nonlinear  functions  f(.) are generally  chosen to  be
sigmoidal  functions  such  as the logistic  sigmoid  or  the
‘tanh’ function (Bishop, 2006).
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f (x)=
1

1+e− x                             (2)

The objective of training a classifier is to find the weights
and biases which minimize the cost function C(w,b). This
cost is calculated with the cross-entropy error as:

c (w ,b)=
−1
m ∑

i=1

m

∑
k=1

n

[ y ik log (aik)+(1− y ik) log (1−aik)]

where n denotes the input vector size and m denotes the
number of examples in the dataset.  The inner summation
is over the input dimension, whereas the outer is over a
whole dataset. Each of the yik are the real-valued output.
Following,  backpropagation  is  performed.   In  order  to
update the weights and bias for improve the results.

The goal  of  backpropagation  is  to  compute  the  partial
derivatives of the cost function with respect to any weight
and bias in the network. 

Is  about  understanding  how changing  the  weights  and
biases in a network changes the cost function.

Because c(w,b) is a continuous function of w and b, its
smallest value will occur at a point in weight space such
that the gradient error function vanishes, so that

∇ c (w ,b)=0                           (3)

as otherwise we could make a small step in the direction

of −∇ c (w,b) and thereby further reduce the error. Our
goal is to find w and b such that c(w,b) takes its smallest
value.  To  solve  the  equation  (3)  we  resort  to  iterative
numerical  procedures.  The  simplest  approach  to  using
gradient  information  is  to  perform  a  small  step  in  the
direction of the negative gradient, so that

w l
=w l

−η
∂ c(wl , bl)

∂wl                      (4)

bl=bl−η
∂ c (w l ,b l)

∂b l                        (5)

where  η>0 is known as the   learning rate.  After each
such  update,  the  gradient  is  re-evaluated  for  the  new
weight vector and the process repeated. At each step the
weights  and  biases  are  moved  in  the  direction  of  the
greatest rate of decrease of the error function, and so this
approach  is  known  as   gradient  descent  optimization
algorithm to adjust the weight of neurons by calculating
the gradient of the loss function(Nielsen, 2015).

The  backpropagation  algorithm  is  summarized  below.
Implementation  details  can  be  found  in  most  neural
network books (e.g. Bishop, 1995).

1. Initialize network weights

2.  present  first  input  vector,  from  training  data,  to  the
network.

3.  Propagate  the  input  vector  through  the  network  to
obtain an output.

4. calculate an error signal by comparing actual output to
the desired (target) output.

5. propagate error signal back through the network.

6. adjust weights to minimize overall error.

7.  repeat  steps  2-7  with  next  input  vector,  until  overall
error is satisfactorily small.

The backpropagation  algorithm contains  two  adjustable
parameters,  the  learning  rate  and  a  momentum  term,
which  can  assist  the  training  process  in  avoiding  this
(Gardner,  1998).  The learning rate determines the step
size  taken  during  the  iterative  gradient  descendant
learning process. If this is too large then the network error
will change erratically due to large weight changes, with
the  possibility  of  jumping  over  the  global  minima.
Conversely, if the learning rate is too small then training
will  take  a  long  time.  The momentum term is  used  to
assist the gradient descent process if it becomes stuck in
a local minimum. By adding a proportion of the previous
weight change to the current weight change (which will be
very  small  in  a  local  minimum)  it  is  possible  that  the
weights can escape the local minimum. 

To test our Neural Network Classifier, we use six different
targets  (Figure 1).   The emissivity  curves S01,S02,S03
and  S04  correspond  to  samples  of  sand  from  four
locations into  the dunes of  Bujurú Beach,  in  the South
Coast of Rio Grande do Sul state, Brazil. They differ from
each other because of their Titanium concentration. The
green curve S05 correspond to sand from the dunes of
Cidreira Beach , in the North Coast of Rio Grande do Sul
state,  Brazil.  And the red curve S06 correspond to  the
emissivity  of  Puyehue volcano ashes (erupted in  2011,
south of Chile).

Figure 2. Emissivity spectral features for the six different
samples tested in the neural network.

The samples were labeled as [0,1,2,3,4,5,6] respectively.
The emissivity  curves  were  measured  under  controlled
temperature  and  humidity  conditions,  using  a  portable
field  spectrometer   μFTIR Model 102. The equipmentFTIR  Model  102.  The  equipment
allows  the  acquisition  of  infrared  spectra  of  natural
surfaces between 2 and 24 µm with spectral resolution of
2, 4 and 16 cm-1, using a Michelson interferometer with
two KBr prisms.  The database created with the spectral
emissivity of the samples consisted of 132 samples, 80
per cent for training the model and 20 per cent for testing
it.
Although the curves within each sample group are very
similar, there are small variations due to the temperature
of the sample at the time of measurement.

Sixteenth International Congress of the Brazilian Geophysical Society

2



IGLESIAS, M.L.,  KÄFER, P.S, ROLIM, S.B.A., HALLAL, G. P., DE ALMEIDA, J.M.


Figure  3.  Emissivity  in  function  of  Temperature  of  the
sample S06 for different wavelength.

This can be seen on Figure 3, where depending on the
wavelength  chosen,  the  emissivity  remains  almost
constant  independent  of  the temperature  (from 8 to  11
μm) and for 12 and 13 μm the values increases in a more
pronounced way.

This highlights  the need to have a good algorithm that
classifies the different targets into the class to which they
belong,  in  spite  of  existing  variations  within  the  same
class. Since, the human eye is unable to perform.

Results

We use 105 training samples for train the model using
first 2 hidden units in the hidden layer, 10 and 100. After
the training step we proceed to test the model in the 27
surplus samples. The results shewed in Figure 4 met our
expectations.
As expected, by placing more hidden units the algorithm
learns  faster and  as  a  consequence  the  accuracy  is
significantly higher for 100 hidden layers than for 2 in a
few hundred of iteration steps (epochs).

Figure 4.  Accuracy in  the predicted  values for  the test
sample and for three values of hidden units in the hidden
layer.

This result shows the importance of the application of new
techniques, such as neural networks, in all  branches of
science  and in  particular  in  remote  sensory,  where  we
meet  daily  with  the  challenges  of  finding  reliable
algorithms when classifying. especially when we deal with
emissivity  spectra.

Conclusions

In  this  work  we  proposed  an  emissivity  spectral
classification  using  a  neural  network  approach.  It  has
been  shown  to  be  a  useful  tool  for  prediction  and
classification It  was showed that  this  technique is  very
powerful giving us a perfect accuracy in a few iteration
steps. 

This work is a preliminary result of a major project, We
are increasing our data bank, adding a greater variety of
samples, with different types of soils and minerals.
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